571. Molecular Interaction: Molecular Polarisation of Amines in Benzene and Carbon Tetrachloride.

By A. N. Sharpe and S. Walker.

Abstract

Evidence of weak interaction between amines and carbon tetrachloride has been obtained from studies of dipole moments. Interaction depends both on the basicity of the amine and on steric factors. Its extent is detected by the difference in total polarisation or dipole moment of the solute in carbon tetrachloride and benzene. Similar interaction occurs with pyridine 1-oxides.

Considerable qualitative evidence ${ }^{1-4}$ indicates that amines can interact with polyhalogenated methanes. Polarisation studies 5,6 of ethers in tri- and tetra-halogenated methanes have indicated the formation of $1: 1$ complexes in solution, the bonding of the trihalogenated being stronger than that of the tetrahalogenated methanes. Similar results were found for acetone and quinoline. ${ }^{6}$ In addition, studies have been made on chloroform-triethylamine mixtures in benzene. ${ }^{5}$ It seems that the trihalogenated complexes are held together mainly by hydrogen bonding, whereas in the tetrahalogenated complexes the halogen atoms act as electron acceptors. Pentachloroethane shows as much tendency as chloroform to combine with ether, whereas hexachlorothane behaves in a similar manner to carbon tetrachloride. ${ }^{6}$

In phase equilibrium studies of systems containing pyridine and polyhalogenated methanes VanderWerf and his co-workers ${ }^{7}$ detected solid compounds having ratios of base to halogenated methane $3: 1,2: 1,1: 1$, and $1: 2$. 2,6-Lutidine appears to form only $1: 1$ solid addition compounds. The compounds other than those containing equimolecular proportions seem to be " lattice compounds."

Whilst Raman spectra ${ }^{8}$ show that the doublet at $790 \mathrm{~cm} .^{-1}$ of carbon tetrachloride shifts in frequency and intensity when liquid ammonia is added, the relaxation time of aniline in carbon tetrachloride solution indicates that any association can be at the most only very weak. ${ }^{9}$ The bands corresponding to the symmetric and antisymmetric aminostretching frequencies of butylamine in carbon tetrachloride and dioxan solution are

[^0]considerably reduced in intensity in the former solvent, suggesting some form of interaction between the amine and carbon tetrachloride. ${ }^{10}$ Partington and Middleton ${ }^{11}$ found the dipole moment of pyridine to be abnormally high in carbon tetrachloride and ascribed this to the presence of an interaction between the solvent and solute. Le Fèvre and his co-workers ${ }^{12}$ also found an increase in dipole moment of 0.12 D relative to benzene for pyridine and rather smaller differences for quinoline and isoquinoline, but they attributed the difference to an increase in atomic polarisation as a result of solvation rather than to formation of a polar adduct.

Experimental

Apparatus.-Dielectric constants were measured by using a heterodyne capacitance meter based on a circuit described by Weissberger ${ }^{13}$ but modified by addition of an oscilloscope to detect the balance point. The apparatus was calibrated with benzene (dielectric constant 2.2725). Capacity changes were followed with a Sullivan Precision Variable Air Condenser, and variations in dielectric constant of 0.0001 could be detected. With the cell in a draughtproof holder, and temperature controlled at $25^{\circ} \pm 0.01^{\circ}$, the maximum drift during at least 0.5 hr . was generally undetectable on the scale of the variable condenser.

Specific volumes were measured in a pyknometer of the type described by Cumper, Vogel, and Walker, ${ }^{14}$ the specific volume of benzene being assumed to be $1 \cdot 14445$.

Refractive indices were measured on a Pulfrich refractometer which was supplied with water at 25° from the thermostat-bath.

Preparation and Purification of Materials.-Thiophen-free, crystallisable benzene was shaken with concentrated sulphuric acid, until no browning of the acid layer occurred, washed, shaken with sodium hydroxide solution, and dried (KOH). The benzene was then distilled from sodium in a $70-\mathrm{cm}$. column packed with glass helices, the middle fraction being collected and refractionated from potassium in a 14 -plate column packed with glass helices, a middle fraction again being taken. This fraction was stored in the dark over sodium wire for at least a week before use.
" AnalaR" carbon tetrachloride was refluxed for several hours with 5\% sodium hydroxide solution, washed with water, dried $\left(\mathrm{CaCl}_{2}\right.$; then $\left.\mathrm{P}_{2} \mathrm{O}_{5}\right)$, and fractionated from phosphoric oxide in a $1-\mathrm{m}$. column packed with Dixon gauze rings. There was no change in b. p. between the first and the last fraction, but a middle fraction, comprising about two-thirds of the total, was always taken and stored for at least a week in the dark over phosphoric oxide before use.
"Spectroscopic-grade" cyclohexane was passed through silica gel to remove any traces of unsaturated compounds and then fractionated from potassium. A middle fraction was taken, although no change in b. p. occurred. The sample was stored for a week over sodium wire before use.

The following compounds were commercial samples, purified by drying ($\mathrm{K}_{2} \mathrm{CO}_{3}$) and fractionation from phosphoric oxide in a high-efficiency, low-hold-up column (recorded b. p.s and m. p.s are given in parentheses) : piperidine, b. p. $106^{\circ} / 760 \mathrm{~mm}$. $\left(105.6^{\circ}{ }^{15}\right.$), butylamine, b. p. $76 \cdot 5^{\circ} / 765 \mathrm{~mm} .\left(76 \cdot 2^{\circ}{ }^{16}\right)$, triethylamine, b. p. $88 \cdot 5^{\circ} / 755 \mathrm{~mm} .\left(89 \cdot 4^{\circ}{ }^{17}\right), 2,6$-dimethylpyridine (fractionated from boron trifluoride ${ }^{18}$), b. p. $144.5^{\circ}\left(144-145^{\circ}{ }^{19}\right)$ [picrate, m. p. $163^{\circ}\left(163^{\circ}{ }^{19}\right)$]. Aniline was a synthetic sample purified as described by Smith ${ }^{\mathbf{2 0}}$ and had b. p. $184^{\circ}\left(\mathbf{1 8 4} \cdot \mathbf{4}^{\circ}{ }^{\mathbf{1 7}}\right)$.

8 -Hydroxyquinoline was recrystallised several times from light petroleum (b. p. 60-80 ${ }^{\circ}$) and had m. p. $75^{\circ}\left(75-76^{\circ}{ }^{19}\right)$.
${ }^{10}$ Richards and Walker, Trans. Faraday Soc., 1961, 57, 399.
11 Partington and Middleton, Nature, 1938, 141, 516.
12 Buckingham, Chau, Freeman, Le Fèvre, Narayana Rao, and Tardif, J., 1956, 1405.
${ }^{13}$ Weissberger, "Physical Methods of Organic Chemistry," Interscience Publ., Inc., New York, 1949, p. 1638.
${ }_{14}$ Cumper, Vogel, and Walker, $J ., 1956,3621$.
${ }_{15}$ Davies and McGee, $J ., 1950,678$.
${ }^{16}$ Rogers, J. Amer. Chem. Soc., 1947, 69, 457.
17 Timmermans, " Physico-Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.

18 Brown, Johnson, and Podall, J. Amer. Chem. Soc., 1954, 76, 5556.
19 Rodd, "Chemistry of Carbon Compounds," Elsevier, Amsterdam, 1957, Vol. IVa.
${ }^{20}$ Few and Smith, J., 1949, 753.

The following compounds were prepared by standard methods and purified by fractionation or crystallisation: 4-methylpyridine 1 -oxide ${ }^{21}$ (from benzene), m. p. $183^{\circ}\left(185-186^{\circ},{ }^{21} 181^{\circ}{ }^{22}\right.$) unchanged by further recrystallisation, 4-phenylpyridine ${ }^{23}$ (froin water), m. p. 77° (77-78 ${ }^{\circ}{ }^{19}$) [picrate, m. p. $196^{\circ}\left(195-196^{\circ}{ }^{23}\right)$], 4-nitropyridine, m. p. $52^{\circ}\left(50^{\circ}{ }^{24}\right)$, 3 -isopropylpyridine, b. p. $179^{\circ} / 750 \mathrm{~mm}$. $\left(179 \cdot 3^{\circ}{ }^{25}\right)$ [picrate, m. p. $138 \cdot 5^{\circ}\left(138 \cdot 1-138 \cdot 6^{\circ}{ }^{25}\right)$], 4-t-butylpyridine, b. p. $197^{\circ} / 765 \mathrm{~mm}$. ($196.3^{\circ}{ }^{25}$) [picrate, m. p. $131^{\circ}\left(130.9-131 \cdot 4^{\circ}{ }^{25}\right)$], 2-phenylpyridine, ${ }^{28}$ b. p. $270^{\circ} / 760 \mathrm{~mm}$. (268-269 ${ }^{\circ}{ }^{19}$) [picrate, m. p. $175-176^{\circ}\left(174-175^{\circ}{ }^{19}\right)$], 2,6-diphenylpyridine, m. p. $80-81^{\circ}\left(81^{\circ}{ }^{27}\right)$ [picrate, m. p. $\left.171^{\circ}\left(171^{\circ}{ }^{27}\right)\right]$.

4-Methylpyridine, b. p. $144 \cdot 2^{\circ} / 750 \mathrm{~mm} .\left(145 \cdot 4^{\circ} / 760 \mathrm{~mm} .{ }^{28}\right.$) [picrate, m. p. $168-169^{\circ}\left(165^{\circ}\right.$, $167^{\circ}, 168^{\circ}{ }^{19}$)], and 3-methylpyridine, b. p. $143 \cdot 5^{\circ} / 755 \mathrm{~mm} .\left(144^{\circ} / 755 \mathrm{~mm} .{ }^{28}\right.$) [picrate, m. p. 153°

Table 1.

$10^{6} w_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
Piperidine in benzene			
1264	$2 \cdot 2745$	$1 \cdot 14449$	$2 \cdot 24352$
2560	$2 \cdot 2762$	$1 \cdot 14453$	$2 \cdot 24343$
3992	$2 \cdot 2781$	$1 \cdot 14455$	$2 \cdot 24305$
5425	$2 \cdot 2802$	$1 \cdot 14459$	$2 \cdot 24292$
6402	$2 \cdot 2816$	$1 \cdot 14462$	$2 \cdot 24274$
10,284	$2 \cdot 2874$	$1 \cdot 14474$	$2 \cdot 24215$
10,698	$2 \cdot 2880$	$1 \cdot 14474$	$2 \cdot 24224$

* Because crystals of triethylamine hydrochloride appear within an hour of mixing, the dielectric constant and specific volume of each solution were measured immediately after mixing and the molar refractivity was calculated from bond data. The dielectric constant of a mixture of triethylamine and carbon tetrachloride did not alter by a significant factor during the total time taken for each set of measurements.
4-Methylpyridine in carbon tetrachloride

759	$2 \cdot 2391$	$0 \cdot 63069$	$2 \cdot 12365$
1311	$2 \cdot 2476$	$0 \cdot 63094$	$2 \cdot 12384$
2006	$2 \cdot 2584$	$0 \cdot 63119$	$2 \cdot 12401$
3015	$2 \cdot 2747$	0.63159	$2 \cdot 12428$
3414	$2 \cdot 2815$	0.63179	$2 \cdot 12448$
4271	2.2945	0.63209	$2 \cdot 12474$
6582	$2 \cdot 3307$	$0 \cdot 63305$	$2 \cdot 12538$

$$
\begin{aligned}
\varepsilon_{12} & =2 \cdot 2270+15 \cdot 8017 w_{2} ; \\
v_{12} & =0 \cdot 63038+0.4064 w_{2} ; \\
n_{12}{ }^{2} & =2 \cdot 12342+0.3015 w_{2} ; \\
{ }_{2} P \infty & =183 \cdot 77 \text { c.c. } ; \\
R_{\mathrm{D}} & =29 \cdot 43 \text { c.c. } ; \mu=2.75 \text { D. } .
\end{aligned}
$$

$10^{6} w_{2}$	ε_{12}	v_{12}	$n_{12}{ }^{2}$
4-Methylpyridine in	cyclo-		
4-			
1416	2.0220	1.29375	2.02479
3274	2.0330	1.29338	2.02490
4700	2.0419	1.29310	2.02510
5661	2.0487	1.29296	2.02541
6771	2.0557	1.29275	2.02558
7970	2.0627	1.29249	2.02575
10,866	2.0805	1.29192	2.02610

$\varepsilon_{12}=2.0128+6.2695 w_{2} ;$
$v_{12}=1.29402-0.1916 w_{2}$;
$n_{12}{ }^{2}=2.02445+0.1594 w_{2} ;$
${ }_{2} P_{\infty}=166 \cdot 66$ c.c.;
$R_{\text {D }}=29.69$ с.с.; $\mu=2.59$ D.
4-t-Butylpyridine in carbon tetrachloride
$\begin{array}{lllll}923 & 2.2365 & 0.63076 & 2.12372\end{array}$
$\begin{array}{lllll}1726 & 2.2473 & 0.63115 & 2 \cdot 12387\end{array}$
$\begin{array}{lllll}2675 & 2.2588 & 0.63158 & 2.12434\end{array}$
$\begin{array}{lllll}4127 & 2 \cdot 2755 & 0.63220 & 2 \cdot 12469\end{array}$
$\begin{array}{lllll}5916 & 2 \cdot 2971 & 0.63303 & 2 \cdot 12524\end{array}$
$\begin{array}{lllll}8828 & 2 \cdot 3311 & 0.63432 & 2 \cdot 12571\end{array}$
$\begin{array}{lllll}10,610 & 2 \cdot 3530 & 0 \cdot 63513 & 2 \cdot 12626\end{array}$
$\varepsilon_{12}=2 \cdot 2266+11 \cdot 8692 w_{2} ;$
$v_{12}=0.63035+0.4517 w_{2}$;
$n_{12}{ }^{2}=2 \cdot 12343+0 \cdot 2822 w_{2}$;
${ }_{2} P_{\infty}=212.33$ c.c.;
$R_{\text {D }}=44.10$ c.c. $; ~ \mu=2.87$ D.
3-Methylpyridine in carbon tetrachloride
chloride
$\begin{array}{llll}569 & 2.2304 & 0.63081 & 2.12332\end{array}$
$\begin{array}{lllll}1809 & 2 \cdot 2371 & 0 \cdot 63170 & 2 \cdot 12302\end{array}$
$\begin{array}{lllll}2011 & 2 \cdot 2387 & 0.63185 & 2 \cdot 12291\end{array}$
$\begin{array}{lllll}2871 & 2.2431 & 0.63253 & 2.12279\end{array}$
$\begin{array}{lllll}3362 & 2 \cdot 2458 & 0.63284 & 2 \cdot 12262\end{array}$
$\begin{array}{lllll}4951 & 2.2545 & 0.63398 & 2 \cdot 12232\end{array}$
$6313 \quad 2 \cdot 2620 \quad 0 \cdot 63497 \quad 2 \cdot 12200$

$$
\begin{aligned}
\varepsilon_{12} & =2 \cdot 2272+5 \cdot 5377 w_{2} ; \\
v_{12} & =0 \cdot 63040+0.7256 w_{2} ; \\
n_{12} & =2 \cdot 12343-0.2298 w_{2} ; \\
{ }_{2} P_{\infty} & =71 \cdot 65 \text { c.c.; } \\
R_{\mathrm{D}} & =25 \cdot 15 \text { c.c. } ; \mu=1.51 \mathrm{D} .
\end{aligned}
$$

$$
\begin{array}{rlll}
1039 & 2 \cdot 2413 & 0.63079 & 2 \cdot 12353 \\
1679 & 2.2497 & 0.63107 & 2 \cdot 12404 \\
2896 & 2 \cdot 2662 & 0.63154 & 2 \cdot 12436 \\
3850 & 2 \cdot 2793 & 0.63193 & 2 \cdot 12471 \\
5344 & 2 \cdot 2998 & 0.63253 & 2 \cdot 12530 \\
5400 & 2 \cdot 3007 & 0.63256 & 2 \cdot 12533 \\
7677 & 2.3306 & 0.63348 & 2 \cdot 12606 \\
\varepsilon_{12} & =2 \cdot 2270+13 \cdot 5769 w_{2} ; \\
v_{12} & =0.63038+0.4031 w_{2} ; \\
n_{12}{ }^{2}= & 2 \cdot 12342+0.3367 w_{2} ; \\
{ }_{2} P_{\infty} & =161.75 \text { c.c.; } \\
R_{\mathrm{D}}=29.71 \text { с.c. } ; \mu=2.54 \text { D. }
\end{array}
$$

[^1]| $10^{6} w_{2}$ | | | |
| :---: | :---: | :---: | :---: |
| 3-Methylpyridine in benzene | | | |
| 2181 | $2 \cdot 2872$ | $1 \cdot 14426$ | 427 |
| 24 | $2 \cdot 2956$ | 1-14413 | |
| 5834 | $2 \cdot 3116$ | 1.14387 | $2 \cdot 24$ |
| 6438 | 2.3163 | 1-1438 | |
| 7108 | $2 \cdot 3213$ | 1.1437 | $2 \cdot 2427$ |
| 11,181 | $2 \cdot 3478$ | 1 -1433 | $2 \cdot 2$ |
| 12,455 | $2 \cdot 3571$ | | $2 \cdot 242$ |
| | | | |
| 3 -Isopropylpyridine in carbon tetrachloride | | | |
| 14 | 2.2334 | $0 \cdot 63063$ | 2.123 |
| 1143 | $2 \cdot 2388$ | $0 \cdot 63086$ | $2 \cdot 12$ |
| | 2.2540 | 0.63151 | |
| 3573 | $2 \cdot 2641$ | $0 \cdot 63192$ | $2 \cdot 12$ |
| 4263 | $2 \cdot 2714$ | $0 \cdot 6322$ | 2 -12 |
| 75 | 2.2801 | 0.63263 | |
| | $2 \cdot 2884$ | $0 \cdot 63298$ | |

$$
\varepsilon_{12}=2 \cdot 2266+10 \cdot 5012 w_{2}
$$

$$
v_{12}=0.63035+0.4442 w_{2}
$$

$$
n_{12}{ }^{2}=2 \cdot 12296+0 \cdot 3013 w_{2}
$$

$$
{ }_{2} P_{\infty}=172.49 \text { c.c. }
$$

$$
R_{\mathrm{D}}=39.53 \text { с.c. } ; \mu=2.55 \mathrm{D}
$$

3-Isopropylpyridine in benzene
$\begin{array}{lllll}1429 & 2.2796 & 1 \cdot 14437 & 2 \cdot 24247\end{array}$
$\begin{array}{lllll}2963 & 2 \cdot 2880 & 1 \cdot 14428 & 2 \cdot 24242\end{array}$
$\begin{array}{lllll}4509 & 2 \cdot 2957 & 1 \cdot 14417 & 2 \cdot 24233\end{array}$
$\begin{array}{lllll}6002 & 2 \cdot 3034 & 1 \cdot 14408 & 2 \cdot 24230\end{array}$
$\begin{array}{lllll}7218 & 2 \cdot 3101 & 1 \cdot 14399 & 2 \cdot 24224\end{array}$
$\begin{array}{lllll}8723 & 2 \cdot 3183 & 1 \cdot 14390 & 2 \cdot 24221\end{array}$
$\begin{array}{llll}12,408 & 2 \cdot 3372 & 1 \cdot 14366 & 2 \cdot 24207\end{array}$
$\varepsilon_{12}=2 \cdot 2723+5 \cdot 2300 w_{2} ;$
$v_{12}=1.14446-0.0638 w_{2} ;$
$n_{12}{ }^{2}=2.24253-0.0386 w_{2}$;
${ }_{2} P_{\infty}=158.20$ c.c.;
$R_{\text {D }}=37.45$ c.c.; $\mu=2.43$ D.
2,6-Dimethylpyridine in carbon tetrachloride
$\begin{array}{lllll}1081 & 2 \cdot 2332 & 0 \cdot 63086 & 2 \cdot 12358\end{array}$
$\begin{array}{lllll}2330 & 2.2402 & 0.63141 & 2 \cdot 12375\end{array}$
$\begin{array}{lllll}3599 & 2 \cdot 2477 & 0.63199 & 2 \cdot 12401\end{array}$
$\begin{array}{lllll}6033 & 2.2617 & 0.63305 & 2 \cdot 12454\end{array}$
$\begin{array}{lllll}7673 & 2.2712 & 0.63378 & 2.12504\end{array}$
$\begin{array}{lllll}11,176 & 2 \cdot 2911 & 0.63539 & 2 \cdot 12576\end{array}$
$\begin{array}{lllll}15,129 & 2 \cdot 3139 & 0.63716 & 2 \cdot 12661\end{array}$

$$
\varepsilon_{12}=2 \cdot 2270+5.7421 w_{2}
$$

$v_{12}=0.63035+0.4507 w_{2}$;
$n_{12}{ }^{2}=2.12326+0.2227 w_{2}$;
${ }_{2} P_{\infty}=98.74$ c.c.;
$R_{\mathrm{D}}=34.21 \mathrm{c.c}$.; $\mu=1.78 \mathrm{D}$.
2,6-Dimethylpyridine in benzene $\begin{array}{lllll}1549 & 2.2769 & 1 \cdot 14438 & 2.24326\end{array}$ $\begin{array}{lllll}3707 & 2.2825 & 1 \cdot 14426 & 2.24331\end{array}$ $\begin{array}{lllll}5662 & 2 \cdot 2879 & 1 \cdot 14416 & 2 \cdot 24352\end{array}$ $\begin{array}{lllll}7752 & 2 \cdot 2938 & 1 \cdot 14405 & 2 \cdot 24364\end{array}$ $\begin{array}{llllll}9144 & 2 \cdot 2977 & 1-14397 & 2 \cdot 24375\end{array}$ $\begin{array}{lllll}11,085 & 2 \cdot 3028 & 1 \cdot 14386 & 2 \cdot 24382\end{array}$ $\begin{array}{lllll}13,450 & 2 \cdot 3096 & 1-14373 & 2 \cdot 24391\end{array}$

$$
\begin{aligned}
\varepsilon_{12} & =2 \cdot 2725+2.7450 w_{2} ; \\
v_{12} & =1 \cdot 14446-0.0537 w_{2} \\
n_{12}{ }^{2} & =2 \cdot 24318+0.0564 w_{2} ; \\
{ }_{2} P_{\infty} & =90.13 \text { c.c.; } \\
R_{\mathrm{D}} & =35.39 \text { c.c.; } \mu=1.64 \mathrm{D} .
\end{aligned}
$$

Table 1. (Continued.)

${ }^{10^{6} w_{2}} \quad \varepsilon_{12} \quad v_{12} \quad n_{12}{ }^{2}$ 4-Phenylpyridine in carbon tetrachloride
$\begin{array}{llllll}1007 & 2.2368 & 0.63061 & 2 \cdot 12407\end{array}$ $\begin{array}{lllll}2383 & 2 \cdot 2498 & 0.63095 & 2 \cdot 12518\end{array}$ $\begin{array}{lllll}2446 & 2.2500 & 0.63097 & 2 \cdot 12515\end{array}$ $\begin{array}{lllll}4220 & 2 \cdot 2665 & 0.63143 & 2 \cdot 12661\end{array}$ $\begin{array}{lllll}5346 & 2.2773 & 0.63172 & 2.12754\end{array}$ $\begin{array}{lllll}6312 & 2.2862 & 0.63197 & 2 \cdot 12810\end{array}$ $\begin{array}{lllll}9255 & 2.3133 & 0.63272 & 2 \cdot 13017\end{array}$
$\varepsilon_{12}=2.2273+9.3255 w_{2} ;$
$v_{12}=0.63035+0.2557 w_{2} ;$
$n_{12}{ }^{2}=2.12342+0.7388 w_{2}$;
${ }_{2} P_{\infty}=193.07$ c.c.;
$R_{\mathrm{D}}=50.22$ с.с.; $\mu=\mathbf{2 . 6 4} \mathrm{D}$.
4 -Phenylpyridine in benzene

1008	2.2772	$1 \cdot 14427$	$2 \cdot 24227$
1617	2.2806	1.14412	2.24240
3216	2.2881	1.14369	2.24278
4682	2.2948	1.14339	2.24326
5353	2.2984	1.14317	2.24349
7781	2.3097	1.14260	2.24427
8688	2.3147	$1 \cdot 14238$	2.24433

$\varepsilon_{12}=\mathbf{2} \cdot 2725+4.8230 w_{2} ;$
$v_{12}=1.14446-0.2350 w_{2} ;$
$n_{12}{ }^{2}=2.24192+0.2745 w_{2}$;
${ }_{2} P_{\infty}=182 \cdot 81$ c.c.;
$R_{\text {D }}=50.16$ c.c.; $\mu=2.55$ d.
2-Phenylpyridine in carbon tetrachloride
$\begin{array}{lllll}1332 & 2 \cdot 2330 & 0.63076 & 2 \cdot 12355\end{array}$
$\begin{array}{llllll}2596 & 2.2399 & 0.63111 & 2.12436\end{array}$
$\begin{array}{llllll}3894 & 2 \cdot 2464 & 0.63150 & 2 \cdot 12547\end{array}$
$\begin{array}{lllll}5656 & 2 \cdot 2557 & 0.63195 & 2 \cdot 12687\end{array}$
$\begin{array}{lllll}6444 & 2 \cdot 2605 & 0 \cdot 63219 & 2 \cdot 12743\end{array}$
$\begin{array}{lllll}8781 & 2.2718 & 0.63279 & 2 \cdot 12961\end{array}$
$\begin{array}{llllll}10,385 & 2 \cdot 2808 & 0.63331 & 2 \cdot 13093\end{array}$
$\varepsilon_{12}=2 \cdot 2260+5 \cdot 2728 w_{2} ;$
$v_{12}=0.63040+0.2766 w_{2} ;$
$n_{12}{ }^{2}=2.12250+0.7859 w_{2} ;$
${ }_{2} P_{\infty}=127 \cdot 48$ c.c.;
$R_{\mathrm{D}}=51.88$ c.c.; $\mu=1.92 \mathrm{D}$.
2-Phenylpyridine in benzene
$\begin{array}{lllll}2281 & 2.2788 & 1-14392 & 2.24355\end{array}$
$\begin{array}{llllll} & 4655 & 2 \cdot 2855 & 1-14334 & 2 \cdot 24430\end{array}$
$\begin{array}{llllll}6878 & 2 \cdot 2920 & 1-14284 & 2.24513\end{array}$
$\begin{array}{lllll}9375 & 2 \cdot 2988 & 1-14221 & 2 \cdot 24613\end{array}$
$\begin{array}{llll}10,042 & 2 \cdot 3007 & 1 \cdot 14207 & 2 \cdot 24619\end{array}$
$\begin{array}{lllll}11,959 & 2 \cdot 3060 & 1 \cdot 14158 & 2 \cdot 24679\end{array}$
$\begin{array}{lllll}15,443 & 2 \cdot 3160 & 1 \cdot 14077 & 2 \cdot 24813\end{array}$
$\varepsilon_{12}=2 \cdot 2725+2 \cdot 8087 w_{2} ;$
$v_{12}=1.14445-0.2378 w_{2} ;$
$n_{12}{ }^{2}=\mathbf{2 . 2 4 2 7 7}+0.3478 w_{2}$;
${ }_{2} P_{\infty}=123.88$ c.c.;
$R_{\mathrm{D}}=51.52$ c.c. $; \mu=1.88 \mathrm{D}$.
2,6-Diphenylpyridine in carbon tetrachloride
$\begin{array}{lllll}578 & 2.2289 & 0.63060 & 2.12469\end{array}$
$\begin{array}{lllll}1102 & 2.2301 & 0.63068 & 2.12489\end{array}$
$\begin{array}{lllll}1560 & 2.2310 & 0.63079 & 2 \cdot 12521\end{array}$
$\begin{array}{llll}2554 & 2.2335 & 0.63102 & 2.12591\end{array}$
$\begin{array}{lllll}4053 & 2.2375 & 0.63137 & 2.12704\end{array}$
$\begin{array}{lllll}4606 & 2.2388 & 0.63151 & 2 \cdot 12740\end{array}$
$\begin{array}{lllll}5290 & 2 \cdot 2406 & 0.63167 & 2 \cdot 12798\end{array}$

$$
\begin{aligned}
\varepsilon_{12} & =2 \cdot 2271+2.5679 w_{2} ; \\
v_{12} & =0.63042+0.2381 w_{2} ; \\
n_{12} & =2 \cdot 12410+0.7304 w_{2} ; \\
{ }_{2} P_{\infty} & =121 \cdot 17 \text { c.c. } ; \\
R_{\mathrm{D}} & =73.53 \text { c.c.; } \mu=1.53 \mathrm{D} .
\end{aligned}
$$

$10^{6} w_{2} \quad \varepsilon_{12} \quad v_{12} \quad n_{12}{ }^{2}$ 2,6-Diphenylpyridine in benzene

1941	$2 \cdot 2755$	$1 \cdot 14391$	$2 \cdot 24445$
3052	$2 \cdot 2770$	$\cdot 14359$	$2 \cdot 24475$
4768	$2 \cdot 2797$	$1 \cdot 14315$	$2 \cdot 24541$
5893	$2 \cdot 2814$	$1 \cdot 14279$	$2 \cdot 24592$
7744	$2 \cdot 2842$	$1 \cdot 14228$	$2 \cdot 24676$
8486	$2 \cdot 2853$	$1 \cdot 14207$	$2 \cdot 24703$
9473	$2 \cdot 2867$	$1 \cdot 14180$	$2 \cdot 24730$

$\varepsilon_{12}=2 \cdot 2725+1.5064 w_{2} ;$
$v_{12}=1 \cdot 14445-0.2795 w_{2} ;$
${n_{12}}^{2}=2 \cdot 24364+0.3903 w_{2}$;
${ }_{2} P_{\infty}=125 \cdot 11$ c.c.;
$R_{\mathrm{D}}=75.83$ c.c.; $\mu=1.55$ D.
4-Nitropyridine in carbon tetrachloride

805	$2 \cdot 2305$	0.63049	$2 \cdot 12334$
2079	2.2356	0.63065	$2 \cdot 12390$
2826	$2 \cdot 2388$	$0 \cdot 63074$	$2 \cdot 12413$
3918	$2 \cdot 2433$	0.63090	$2 \cdot 12469$
4815	$2 \cdot 2467$	0.63101	$2 \cdot 12489$
5406	$2 \cdot 2491$	0.63110	$2 \cdot 12533$
7292	$2 \cdot 2567$	0.63133	$2 \cdot 12582$

$\varepsilon_{12}=2.2273+4.0379 w_{2} ;$
$v_{12}=0.63038+0.1312 w_{2} ;$
$n_{12}{ }^{2}=2.12302+0.4038 w_{2}$;
${ }_{2} P_{\infty}=80.47$ c.c.;
$R_{\mathrm{D}}=31.32$ c.c.; $\mu=1.55 \mathrm{D}$.
8-Hydroxyquinoline in carbon tetrachloride
$\begin{array}{lllll}665 & 2.2325 & 0.63053 & 2 \cdot 12422\end{array}$
$\begin{array}{lllll}1039 & 2.2366 & 0.63061 & 2 \cdot 12445\end{array}$
$\begin{array}{lllll}1784 & 2.2438 & 0.63077 & 2 \cdot 12495\end{array}$
$\begin{array}{lllll}1954 & 2.2450 & 0.63080 & 2 \cdot 12504\end{array}$
$\begin{array}{lllll}2616 & 2.2521 & 0.63093 & 2.12538\end{array}$
$\begin{array}{lllll}2739 & 2 \cdot 2532 & 0.63096 & 2 \cdot 12556\end{array}$
$\begin{array}{lllll}3548 & 2.2615 & 0.63112 & 2.12614\end{array}$
$\varepsilon_{12}=2 \cdot 2260+9.9614 w_{2} ;$
$v_{12}=0.63040+0.2036 w_{2}$;
$n_{12}{ }^{2}=2.12378+0.6469 w_{2}$;
${ }_{2} P_{\infty}=188.24$ с.c.;
$R_{\mathrm{D}}=43.43$ с.c.; $\mu=2.66 \mathrm{D}$.
Aniline in carbon tetrachloride
$\begin{array}{lllll}1629 & 2.2352 & 0.63099 & 2 \cdot 12530\end{array}$
$\begin{array}{lllll}3409 & 2.2438 & 0.63167 & 2 \cdot 12620\end{array}$
$\begin{array}{lllll}5271 & 2.2534 & 0.63236 & 2 \cdot 12743\end{array}$
$\begin{array}{lllll}6982 & 2 \cdot 2620 & 0.63302 & 2 \cdot 12839\end{array}$
$\begin{array}{lllll}8197 & 2.2679 & 0.63347 & 2.12924\end{array}$
$\begin{array}{lllll}10,072 & 2 \cdot 2782 & 0 \cdot 63420 & 2 \cdot 13029\end{array}$ $\begin{array}{lllll}10,966 & 2 \cdot 2826 & 0 \cdot 63452 & 2 \cdot 13093\end{array}$
$\varepsilon_{12}=2 \cdot 2265+5 \cdot 1068 w_{2}$
$v_{12}=0.63038+0.3776 w_{2}$
$n_{12}^{2}=2.12427+0.5995 w_{2} ;$
${ }_{2} P_{\infty}=77.59$ c.c.;
$R_{\mathrm{D}}=31.79$ с.с.; $\mu=1.50 \mathrm{D}$.
Pyridine l-oxide in benzene
$\begin{array}{llll}1209 & 2 \cdot 2964 & 1-14398 & 2 \cdot 24385\end{array}$
$\begin{array}{lllll}2069 & 2.3129 & 1 \cdot 14368 & 2.24415\end{array}$
$\begin{array}{lllll}3639 & 2 \cdot 3452 & 1-14313 & 2.24478\end{array}$
$\begin{array}{lllll}3648 & 2 \cdot 3467 & 1 \cdot 14312 & 2 \cdot 24454\end{array}$
$\begin{array}{lllll}6607 & 2 \cdot 4048 & 1-14203 & 2 \cdot 24553\end{array}$
$\begin{array}{lllll}7442 & 2 \cdot 4245 & 1-14172 & 2.24577\end{array}$
$\begin{array}{lllll}9841 & 2 \cdot 4726 & 1-14084 & 2 \cdot 24661\end{array}$
$\varepsilon_{12}=2 \cdot 2720+20.2318 w_{2} ;$
$v_{12}=1.14444-0.3651 w_{2} ;$
$n_{12}{ }^{2}=2.24350+0.3114 w_{2} ;$
${ }_{2} P_{\infty}=383.95$ c.c.;
$R_{\mathrm{D}}=27.36$ c.c.; $\mu=4.18 \mathrm{D}$.
$10^{6} w_{2} \quad \varepsilon_{12} \quad v_{12} \quad n_{12}{ }^{2}$
Pyridine 1 -oxide in cyclo-
hexane \dagger
$\varepsilon_{12}=2.0130+15.84 w_{2} ;$
$v_{12}=1 \cdot 29374-0.338 w_{2}$;
${ }_{2} P_{\infty}=386 \cdot 0$ с.c.;
$\mu=4.19 \pm 0.03 \mathrm{D}$.
\dagger Several other solutions
which were prepared gave pre-
cipitates before measurement
was complete. The R_{D} value
obtained for benzene solution
was used in calculating μ.

Table 1. (Continued.)

\[

\] obtained show that quoting weight fractions to the accuracy expressed here is acceptable.

Table 2. Dipole moments at 25°.

	μ_{B} (D)	$\mu_{\text {CT }}$ (D)	$\mu_{\text {CH }}(\mathrm{D})$	Lit.
Butylamine.	-	$1 \cdot 51$		
Piperidine	-	$1 \cdot 29$		
Triethylamine	-	0.98		
4-Methylpyridine	-	$2 \cdot 75$	$2 \cdot 59$	B $2.60{ }^{\text {a }}$
4-t-Butylpyridine	-	$2 \cdot 87$		B $2.73{ }^{\text {a }}$
2,6-Dimethylpyridine	$1 \cdot 64$	1.78		B 1-65, ${ }^{\text {b }} 1 \cdot 66^{\text {a }}$
3-Methylpyridine	$2 \cdot 41$	2.54		B $2 \cdot 40{ }^{\text {a }}$
3-Isopropylpyridine	2.43	2.55		
4-Phenylpyridine	2.55	$2 \cdot 64$		
2-Phenylpyridine	1.88	1.92		
4-Nitropyridine	-	1.55		
2,6-Diphenylpyridine	1.55	1.53		
8-Hydroxyquinoline	-	1.86		
Aniline.......	-	$1 \cdot 50$		CT $1.48{ }^{\circ}$
4-Methylpyridine 1-oxide	$4 \cdot 50$	4.97		B $4.74{ }^{\text {d }}$
Pyridine l-oxide	$4 \cdot 18$	-	4-19	B $4.24{ }^{\text {e }}$

© See ref. 14. ${ }^{b}$ Goethals (Rec. Trav. chim., 1935, 54, 299. ${ }^{\circ}$ Few and Smith's figures ($J ., 1949$, 3057) recalculated, with $P_{\mathrm{E}}+P_{\mathrm{A}}=R_{\mathrm{D}} .{ }^{d}$ Katritzky, Randall, and Sutton, $J ., 1957,1769$. e Linton, J. Amer. Chem. Soc., 1940, 62, 1945.
$\left(153^{\circ}{ }^{29}\right)$], were prepared by reduction of the appropriate methylpyridine 1 -oxide with phosphorus trichloride followed by drying and fractionation in the column mentioned. ${ }^{30}$

In all cases, solid samples were stored under a high vacuum in the dark and in the presence of phosphoric oxide and wax shavings for at least 2 days before use. For deliquescent compounds, the desiccator was refilled with dry nitrogen before opening. Liquids were used immediately after distillation, or, where this was not possible, stored in small Quickfit stoppered flasks with a minimum of air-space and in the dark.

Results.-At least six solutions varying in weight fraction between 0.001 and 0.015 were used in each determination of dipole moment. Solute-solute interactions have been assumed to be negligible in this concentration range, and in all cases the plots of dielectric constant $\left(\varepsilon_{12}\right)$, specific volume $\left(v_{12}\right)$, and squares of the refractive indices $\left(n_{12}{ }^{2}\right)$ against their weight fractions showed no deviation from linearity. The equations employed were $\varepsilon_{12}=\varepsilon_{1}+\alpha w_{2}$, $v_{12}=v_{1}+\beta w_{2}$, and $n_{12}{ }^{2}=n_{1}{ }^{2}+\gamma w_{2}$, where α, β, and γ were calculated from the quotients shown below in order to avoid giving undue weight to the results in the most dilute solutions:

$$
\alpha=\sum\left(\varepsilon_{12}-\varepsilon_{1}\right) / \sum w_{2}, \quad \beta=\sum\left(v_{12}-v_{1}\right) / \sum w_{2}, \quad \gamma=\sum\left(n_{12}{ }^{2}-n_{1}{ }^{2}\right) / \sum w_{2}
$$

[^2]Table 3. Polarisation, relative polarisation, and dipole-moment changes.

	$\begin{gathered} { }_{\mathbf{2}} P_{\infty} \text { (B) } \\ \text { (c.c.) } \end{gathered}$	$\underset{{ }_{2} P_{\infty}(\mathrm{C} . \mathrm{CT})}{ }$	$\begin{gathered} \Delta P \\ \text { (c.c.) } \end{gathered}$	$\Delta P /{ }_{2} P_{\infty}$ (B)	$\begin{gathered} \mu_{\mathrm{B}} \\ (\mathrm{D}) \end{gathered}$	$\begin{aligned} & \mu_{\text {CT }} \\ & \text { (D) } \end{aligned}$	$\begin{aligned} & \Delta \mu \\ & (\mathrm{D}) \end{aligned}$	$\mathrm{p} K_{\boldsymbol{a}}$
Butylamine	$61 \cdot 13^{\text {b }}$	$71.65{ }^{\text {a }}$	+10.52	$0 \cdot 172$	$1 \cdot 34$	1.51	$+0 \cdot 17$	$10 \cdot 6{ }^{\text {i }}$
Piperidine	52:78a	61.62a	+8.84	0.167	1-13	1.29	$+0.16$	$11 \cdot 1^{j}$
Triethylamine	$50 \cdot 10^{\text {c }}$	53-16 ${ }^{\text {a }}$	+3.06	0.061	0.91	0.98	$+0.07$	10.78 ${ }^{\text {k }}$
4-Methylpyridine	$167 \cdot 88{ }^{\text {d }}$	183.77^{a}	$+15 \cdot 89$	0.095	$2 \cdot 60$	2.75	$+0.15$	$6.02{ }^{\text {l }}$
4-t-Butylpyridine	$195 \cdot 26^{\text {d }}$	212-33 ${ }^{\text {a }}$	$+17.07$	0.087	2.73	2.87	$+0.14$	$5 \cdot 99^{l}$
2,6-Dimethylpyridine	$90 \cdot 13^{\text {a }}$	$98.74{ }^{\text {a }}$	+8.61	0.096	1.64	1.78	$+0.14$	$6.75{ }^{\text {l }}$
3-Methylpyridine	$147 \cdot 63{ }^{\text {a }}$	161.75 ${ }^{\text {a }}$	$+14 \cdot 12$	0.096	2.41	$2 \cdot 54$	$+0.13$	$5 \cdot 68{ }^{\text {l }}$
3-Isopropylpyridine	$158.20{ }^{\text {a }}$	172.49 a	+14.29	0.090	2.43	2.55	$+0.12$	$5 \cdot 72{ }^{l}$
Pyridine	$127.8{ }^{\text {e }}$	$138.8{ }^{\text {e }}$	$+11.0$	0.086	2.25	2.37	$+0.12$	$5 \cdot 29{ }^{m}$
4-Phenylpyridine	$182 \cdot 81{ }^{\text {a }}$	$193 \cdot 0{ }^{\text {a }}$	$+10 \cdot 26$	0.056	2.55	$2 \cdot 64$	$+0.09$	-
2-Phenylpyridine	$123.88{ }^{\text {a }}$	$127 \cdot 48^{\text {a }}$	+3.60	0.029	1.88	1.92	$+0.04$	-
4-Nitropyridine	82.00^{\prime}	$80.47{ }^{\text {a }}$	-1.53	-0.019	1.58	1.55	-0.03	- 14
Isoquinoline	$181.0{ }^{\text {e }}$	$184.4{ }^{\text {e }}$	+3.4	0.019	2.61	$2 \cdot 65$	$+0.04$	$5 \cdot 14^{\prime}$
Quinoline .	$144 \cdot 4{ }^{\text {e }}$	$147 \cdot 1{ }^{\text {e }}$	+2.7	0.019	2.24	2.27	$+0.03$	$4 \cdot 94{ }^{\text {j }}$
2,6-Diphenylpyridine	$125.11{ }^{\text {a }}$	$121.17^{\text {a }}$	-3.94	-0.031	1.55	1.53	-0.02	-
8-Hydroxyquinoline	$191.48{ }^{\text {g }}$	$188.24{ }^{\text {a }}$	-3.24	-0.017	$2 \cdot 68$	$2 \cdot 66$	-0.02	-
Aniline.	$78.35{ }^{\text {h }}$	$77.59{ }^{\text {a }}$	-0.76	-0.010	1.53	1.50	-0.03	4-58 ${ }^{\text {d }}$
4-Methylpyridine l-oxide	448.90 ${ }^{\text {a }}$	$540 \cdot 71{ }^{\text {a }}$	$+91.81$	$0 \cdot 205$	$4 \cdot 50$	4.97	$+0.47$	-

$\mathrm{B}=$ Benzene. $\quad \mathrm{CT}=$ Carbon tetrachloride.

$$
\Delta P={ }_{2} P_{\infty}(\text { in CT })-{ }_{2} P_{\infty}(\text { in B). } \Delta \mu=\mu(\text { in CT })-\mu(\text { in B) })
$$

${ }^{a}$ This investigation. ${ }^{b}$ Few and Smith's figures ($J, 1949,2663$) recalculated with $R_{\mathrm{D}}=P_{\mathrm{E}}+P_{\mathrm{A}}$.
Barclay, Le Fèvre, and Smythe (Trans. Faraday Soc., 1950, 46, 812). ${ }^{\text {a }}$ Cumper, Vogel, and Walker. ${ }^{14}$ e Buckingham, Le Fèvre, et al. ${ }^{12}{ }^{f}$ Katritzky, Randall, and Sutton ($J ., 1957,1769$). ${ }^{g}$ Richards and Walker. ${ }^{10}{ }^{h}$ Few and Smith, J., 1949, 3057. ${ }^{i}$ Hall and Sprinkle, J. Amer. Chem. Soc., 1932, 54, 3469. ${ }^{j}$ From Rodd. ${ }^{20}{ }^{k}$ Dilke, Eley, and Sheppard, Trans. Faraday Soc., 1950, 46, 261. ${ }^{\text {' }}$ Brown and Mihm, J. Amer. Chem. Soc., 1955, 77, 1723. m Jaffé and Doak, ibid., p. 4441.

The molar polarisation (${ }_{2} P_{\infty}$) and R_{D} value at infinite dilution were calculated from the equations:

$$
\begin{aligned}
& { }_{2} P_{\infty}=M_{2}\left[3 \alpha v_{1} /\left(\varepsilon_{1}+2\right)^{2}+\left(\varepsilon_{1}-1\right)\left(v_{1}+\beta\right) /\left(\varepsilon_{1}+2\right)\right] \\
& R_{\mathrm{D}}=M_{2}\left[3 \gamma v_{1} /\left(n_{1}{ }^{2}+2\right)^{2}+\left(n_{1}{ }^{2}-1\right)\left(v_{1}+\beta\right) /\left(n_{1}{ }^{2}+2\right)\right]
\end{aligned}
$$

where ε_{1} was taken as $2 \cdot 2725, n_{1}{ }^{2}$ as $2 \cdot 24331$, and v_{1} as $1 \cdot 14445$. The dipole moment (μ) was obtained from the usual relation, $\mu=0.01281\left(P_{0} T\right)^{\frac{1}{2}}$. P_{0} was calculated by assuming that $P_{\mathrm{E}}+P_{\mathrm{A}}=R_{\mathrm{D}}$. In fact, R_{D} is less than $P_{\mathrm{E}}+P_{\mathrm{A}}$, and the true dipole moment values are inexact to this extent. If, however, the P_{A} values are not strongly solvent-dependent, then the resultant dipole-moment difference is not greatly in error.

Tables 1-3 give detailed results.

Discussion

Table 3 shows that the difference in moment between carbon tetrachloride and benzene solution $(\Delta \mu)$ varies from slightly negative to 0.17 D for the amines, and to 0.47 D for 4 -methylpyridine 1 -oxide. The differences in total polarisation range up to $17 \cdot 1$ c.c. for the amines. Changes in total polarisation of this magnitude are unlikely to be solely due to increases in atomic polarisation, as suggested by Le Fèvre and his co-workers. The change in total polarisation of 4 -methylpyridine 1 -oxide (91.8 c.c.) is nearly three times the R_{D} value of that compound in benzene. Further, the known P_{A} and P_{E} values for pyridine are 1.5 and 23.0 c.c. respectively. ${ }^{31}$ An increment of 11.0 c.c. in P_{A} for this compound in carbon tetrachloride is hardly conceivable. The dipole moments can best be explained by a donor-acceptor type of interaction, a transient increase in polarisation occurring as carbon tetrachloride molecules approach the vicinity of the lone-pair electrons of the nitrogen atom. Such an interaction would increase the total polarisation of the system, partly by increasing the atomic polarisation of the interacting molecules and partly by a change in dipole moment. The alternative explanation of the dipole moment differences as being due to interaction of the amines with the π-electron clouds of benzene can be discounted because of the similarity of the dipole moments of 4-methylpyridine,

[^3]and also of pyridine 1 -oxide, in benzene and cyclohexane. There are other cases to support this. ${ }^{32}$

The observed increase should depend on two factors: (i) The stability of the adduct, where the total polarisation might be expected to increase as the basicity of the amine increases. The $\Delta \mu$ values would then show some dependence on the $\mathrm{p} K_{\mathrm{a}}$ of the amine. If $\Delta \mu$ or ΔP is plotted against $\mathrm{p} K_{\mathrm{a}}$ an approximately straight line is obtained for those molecules where the steric factors in the 2 - and the 6 -position are small. (ii) Since the bonding cannot be very strong, the number of solvent molecules passing near the nitrogen atom should depend on the total volume of approach that is available. The effect should, thus, be very dependent on steric factors. The steric effect is lowest in pyridines having no 2 -substituent; this may account for their $\Delta \mu$ values which are high in relation to basicity.

The steric effect is well illustrated by 2 -substituted pyridines. A 2-phenyl group cuts off about half the approach that is available in pyridine itself, although the basicity can hardly alter greatly. The $\Delta \mu$ value (0.04 D) is considerably less than that of pyridine. A second phenyl group (in the 6-position) almost completely blocks the approach of carbon tetrachloride molecules: the $\Delta \mu$ value is then -0.02 D . A slightly negative value was also found for aniline and 8 -hydroxyquinoline, in both of which interaction can be expected to be negligible. Although 2,6-dimethylpyridine has a higher $\mathrm{p} K_{\mathrm{a}}$ than pyridine, the steric effect of the two methyl groups limits the increase in dipole moment which might be expected $(0 \cdot 14 \mathrm{D})$. The steric effect of the methyl groups in this compound has been previously reported. ${ }^{33}$

The $\Delta \mu$ value for 4 -nitropyridine is -0.03 D , but since the total dipole moment acts in the opposite direction to the nitrogen lone-pair dipole, the value required for comparison is +0.03 D . A low value would be expected in view of the probable reduction in basic strength as a result of electron-withdrawal by the nitro-group. Similar $\Delta \mu$ values are found for quinoline and isoquinoline which have lower basicities than pyridine.

In aliphatic amines, the alkyl groups and the amino-hydrogen atoms considerably obstruct the approach of carbon tetrachloride molecules, reducing the effect of their high basicity. In butylamine ($\Delta \mu 0.17 \mathrm{D}$) there are a number of rotational configurations in which approach is blocked.

It is impossible for the three ethyl groups all to lie " behind " the nitrogen atom at the same time in triethylamine; one of the groups must project over the nitrogen atom, thus shielding it from the approach of carbon tetrachloride molecules. As was expected, the $\Delta \mu$ value (0.07 D) was less than that of butylamine. The effect of the three ethyl groups in hindering the formation of co-ordination compounds has been previously reported. ${ }^{34}$

Piperidine has the highest basicity of the amines considered here, but again approach to the nitrogen atom is considerably restricted, not only by the adjacent CH_{2} groups and the amino-hydrogen atom, but also by the remainder of the molecule since the ring is puckered. The $\Delta \mu$ value ($0 \cdot 16 \mathrm{D}$) appears reasonable in view of this.

Physical evidence indicates that the interaction of aniline with carbon tetrachloride is negligible. ${ }^{9}$ The basicity is low, and approach to the nitrogen atom is also hampered by the amino-hydrogen atoms. The $\Delta \mu$ value found was -0.03 D . Infrared ${ }^{35}$ and dipolemoment work ${ }^{10}$ indicates that 8 -hydroxyquinoline is strongly intramolecularly hydrogen bonded. Formation of any complex involving the lone pair of the nitrogen atom is, thus, not feasible. The $\Delta \mu$ value was -0.02 D , in accord with the values obtained for aniline and 2,6-diphenylpyridine. In these cases, this small negative value appears to be the straightforward solvent effect.

[^4]The dipole-moment values obtained for pyridine 1 -oxide and 4 -methylpyridine 1 -oxide differ from reported values because of complete exclusion of water. The effect of traces of moisture on the dipole moments of the pyridine oxides will be discussed in a later paper. The result indicates that a large increase in dipole moment may occur in carbon tetrachloride solution. This is not unreasonable, since the compounds are basic and the oxygen atoms may act as donors in a number of co-ordination complexes. ${ }^{36}$ Moreover, there are two sets of lone-pair electrons on the oxygen atom, which extend well away from the bulk of the molecule and so are more favourably placed for interaction with carbon tetrachloride molecules.

The results as a whole are consistent with the concept of donor-acceptor interaction where carbon tetrachloride is the acceptor. Such interaction should be exothermic, and the heats of mixing of a number of substituted pyridines with benzene and carbon tetrachloride are at present being measured. The results so far agree well with the conclusions from dipole moments, the heat of mixing with benzene being small and mainly negative, but with carbon tetrachloride appreciably positive; the quantity of heat evolved is higher for compounds with high $\Delta \mu$ values.

One of us (A. N. S.) is indebted to the Department of Scientific and Industrial Research for a maintenance grant. We express our gratitude to Mr. L. P. Priestly, the Head of this Department, for his interest and support, also to Mr. A. Clarke for technical assistance.

[^5]
[^0]: ${ }^{1}$ Collins, Chem. and Ind., 1957, 704.
 ${ }^{2}$ Davies, Evans, and Whitehead, J., 1939, 644.
 ${ }^{3}$ Sharada and Murthy, Current Sci., 1960, 5, 179.
 ${ }_{5}^{4}$ Cromwell, Foster, and Wheeler, Chem. and Ind., 1959, 228.
 ${ }^{5}$ Hammick, Norris, and Sutton, J., 1938, 1755.
 ${ }^{6}$ Earp and Glasstone, $J ., 1935,1709,1720$.
 7 Davidson, VanderWerf, and Boatwright, J. Amer. Chem. Soc., 1947, 69, 3045; VanderWerf, Davidson, and Michaelis, ibid., 1948, 70, 908.
 ${ }^{8}$ Kinumaki and Aida, Sci. Reports Res. Inst. Tohoku Univ., 1954, A, 6, 636.
 ${ }^{9}$ Fischer, Z. Naturforsch., 1954, 9a, 904.

[^1]: ${ }^{21}$ Boeckelheide and Linn, J. Amer. Chem. Soc., 1954, 76, 1286.
 22 Ochiai, J. Pharm. Soc. Japan, 1944, 64, 72.
 ${ }_{24}$ Haworth, Heilbron, and Hey, J., 1940, 349.
 ${ }^{24}$ Ochiai, J. Org. Chem., 1953, 18, 534.
 ${ }^{25}$ Brown and Murphey, J. Amer. Chem. Soc., 1951, 73, 3308.
 ${ }^{26}$ Gilman and Blatt, Org. Synth., Coll. Vol. II.
 ${ }^{27}$ Heilbron, "Dictionary of Organic Compounds," Eyre and Spottiswoode, London, 1936.
 ${ }^{28}$ Biddiscombe, Coulson, Handley, and Herington, J., 1954, 1957.

[^2]: ${ }^{29}$ Coulson and Jones, J. Soc. Chem. Ind., 1946, 65, 169.
 ${ }^{30}$ Ray, Rev. Sci. Instr., 1957, 28, 200.

[^3]: ${ }^{31}$ Cartwright and Errera, J. Proc. Roy. Soc., 1936, A, 154, 138.

[^4]: ${ }^{32}$ See Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts, 1948.
 ${ }^{33}$ Braude and Nachod, " Determination of Organic Structures by Physical Methods," Academic Press, New York, 1955, p. 640.
 ${ }^{34}$ Ref. 33, p. 642.
 ${ }^{35}$ Bellamy and Hallam, Trans. Faraday Soc., 1959, 55, 220.

[^5]: School of Chemistry, College of Technology, Leicester.
 [Received, November 1st, 1960.]
 ${ }^{56}$ Katritzky and Lagowski, " Heterocyclic Chemistry," Methuen, London, 1960, p. 104.

